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The calculation of some electronic processes, such as bound-free transitions in plasmas, require a description
of the free-electron wave function that is consistent with that of the bound state. Because the plasma is a
disordered media, such a description is difficult. In this paper, we first propose that the one-electron expectation
values^cEuAucE& can be considered as self-averaging quantities whenucE& is delocalized. Using this, we give
a description of the eigenstate that is consistent with the disorder, and that permits us to calculate^cEuAucE&
in the thermodynamic limit. Finally, we test the method by calculating an electron-ion correlation function in
liquid sodium.@S1063-651X~96!03608-2#

PACS number~s!: 61.20.Ne, 52.65.Rr

I. INTRODUCTION

An electronic property can be computed as the expecta-
tion value of a relevant operator@i.e., Tr(rA)#. Over the past
30 years, powerful operatorial methods have been developed
to calculated these expectation values independently from
the eigenstates@1,2#. These methods, however, are not con-
venient to calculate the detailed absorption spectrum that is
useful in opacity calculations@3#. For this problem, a better
accuracy is obtained by expanding the relevant operator in
terms of the electron wave functions. The averaged bound-
free transition elements, for example, are calculated using the
wave functions of the bound and of the free states. However,
the free-electron wave function is usually obtained from a
spherically averaged potential@4–6#, and this is not satisfy-
ing when the system is disordered and when the density is
large. Hence a better method to calculate such quantities
would be useful, and this is the motivation of the present
work.

Considering a delocalized eigenstate of energyE ~in place
of a free state, which would be relevant to a spherical poten-
tial!, we examine the quantitŷcEuAucE&, whereA is an
operator. For example, within the electric dipolar approxima-
tion, the averaged transition matrix element from the bound
orbital uw& to a state at energyE is proportional to

(
ucE&

^cEuAucE&5(
ucE&

K cEU(
j
p1Uw j L ^w j upucE&, ~1!

wherewj ~r !5w~r2Rj !, Rj are the ionic positions, and where
the sum is performed over the degeneracy of energyE. The
scope of this work is to propose a method to compute quan-
tities such as~1!, and to test this method by calculating an
electron-ion correlation function in liquid sodium.

The paper is organized as follows. We first propose that
the one-electron expectation values^cEuAucE& can be con-
sidered self-averaging quantities whenucE& is delocalized.
We then give a method to calculate^cEuAucE& in the ther-
modynamic limit. We finally test the method by calculating

an electron-ion correlation function in liquid sodium and by
comparing our results with other methods.

II. SELF-AVERAGING PROPERTY
IN THE DELOCALIZED REGIME

We consider a simple liquid or a plasma. It consists ofN
identical atoms contained in a box. Using a Born-
Oppenheimer approximation, the ions have fixed positions in
space and form a configuration, which has been effectively
reached by the system. In the independent electron approxi-
mation, the electronic structure is dictated by a single elec-
tron Hamiltonian that includes both exchange and correlation
effects. Using atomic units and denoting the Laplacian byD,
we assume the Hamiltonian can be cast into the following
form:

H52D/21(
j51

N

Vj , ~2!

whereVj ~r !5V~r2Rj !, with V a spherically symmetric op-
erator andRj an ionic position.

Assuming electrons are independent, and because the den-
sity of states is self-averaging, the thermodynamic average of
an operatorA is equal to the sum of averaged expectations
over occupied one-electron eigenstates:

Tr~rA!5E f ~E!n~E!^Tr~rEA!&dE, ~3!

wheref is the Fermi-Dirac occupation factor,n is the density
of states,rE is the projector at energyE, scaled by Tr~rE!51,
and wherê & represents the average over configurations. To
calculate^Tr~rEA!&, we expand it as

Tr~rEA!5E
q2/25E

^cquAucq&dq̂/~4pq2!, ~4!

whereucq& is the general solution of Schro¨dinger’s equation,
as obtained from the exact Green’s function~see@7#, Chap.
4!. Except for a normalization constant, it is*Electronic address: dallot@limeil.cea.fr

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/2143~4!/$10.00 2143 © 1996 The American Physical Society



ucq&5S I1GE
Re(

j51

N

Vj D uq&, ~5!

whereuq& is a plane wave,GE
Re5Re(GE

1)51
2(GE

11GE
2) is the

real part of the Green’s function related toH andE5q2/2.
The wave function~5! does not satisfy the boundary condi-
tions of the finite system. Hence it is not a proper solution for
the problem considered. The trace, however, does not depend
on a change of basis, so that~4! seems a reasonable approxi-
mation in a macroscopic system.

The central assumption in this work is that the one-
electron expectation values of an operatorA, which is sym-
metric with respect to exchange of ions, are self-averaging
quantities whenucq& is delocalized. In the thermodynamic
limit, ^^cquAucq&&5^cquAucq& holds, and we have

^Tr~rEA!&5E
q2/25E

^cquAucq&dq̂ Y~4pq2!. ~6!

This applies to the expectation values of the identity and of
the Hamiltonian ~2!. It also applies to the operator
Ar~r 8!5(jd~r 82Rj2r ! which yields the electron-ion corre-
lation, and to the bound-free transition element given in Eq.
~1!.

Physically, this may be interpreted as follows. If a delo-
calized eigenstate is decomposed in localized orbitals, a
change of ionic configuration caused by a local density fluc-
tuation would affect only a small number of coefficients of
the wave function. This, in turn, has an insignificant effect on
the matrix element, which is a sum over all sites contributing
to the extended wave function. In a macroscopic specimen,
all local fluctuations can be considered present with a fre-
quency proportional to their probability of occurrence. Local
density fluctuations induce local changes in the coefficients,
thus making the matrix element a sum over various local
configurations. By contrast, this property does not hold in the
localized regime. In this case, the expectation value obvi-
ously depends on the ionic configuration that exists in the
region where the wave function takes nonzero values.

III. THE EXPECTATION VALUE

Because our goal is to propose a one-site approach, we
decompose the extended wave functionucq& using a linear
combination of atomic orbitals~LCAO!-like expansion.
However, we allow the on-site ‘‘basis’’ufn& to be a finite set
of nonorthogonal wave functions rather than atomic orbitals.
Henceucq& is expanded as

ucq&51 YAN (
j ,n

cj
q,nuf j

n&, ~7!

where f j
n~r !5fn~r2Rj !, cj

q,n5AN^f j
nucq&, and ^f j

nu are
the conjugates ofuf j

n&. Expression~7! can be expressed as

ucq&5(
n

ucq
n&, ucq

n&5Pnucq&5
1

AN (
j
cj
q,nuf j

n&, ~8!

where Pn5( j uf j
n&^f j

nu. It is remarked that the states
(ucq

n&)nP@1,1`# generate a space of wave functions that con-
tains ucq& and make up a basis of this space. We propose to

use these basis states to describe the stateucq&. Interest in this
basis arises from the matrix elementŝcq

nuAucq
n&

5^cquPn
1APn8ucq& being self-averaging quantities, as in-

ferred from the hypothesis detailed in Sec. II. The matrix
elements are

^cq
n8uAucq

n&5
1

N (
i

K (
j
ci
q,n~cj

q,n8!* ^f j
n8uAuf i

n&L
5Š~c1

q,n~c1
q,n8!* ^f1

n8uAuf1
n&&

1~N21!^c1
q,n~c2

q,n8!* ^f2
n8uAuf1

n&‹. ~9!

In this expression, terms such as^f2
n8uAuf1

n& are well-
defined functions of the ionic configuration. Neglecting the

correlation between the productc1
q,n(c2

q,n8)* and the posi-
tions of the atoms different from 1 and 2, these matrix ele-
ments can be expressed in terms of correlation functions

such asu(R)5^c1
q,n(c2

q,n8)* d(R2R11R2)&. The problem
of finding the matrix elements is thus transformed into that
of finding these correlation functions. Neglecting the overlap
integrals in the expression of the local projectorsuf j

n&^f j
nu,

the correlation functions are written as

unn8
q

~R!5Š^f2
nucq&^cquf1

n8&d~R2R11R2!‹,

vnn8
q

~R!5Š^f1
nucq&^cquf1

n8&d~R2R11R2!‹.

Thus we essentially assume that the phase ofcj
q,n is that of

ucq& at site Rj . We finally approximate these correlation
functions using the factorized form:

unn8
q

~R!5^fnuFq&j
q~R!^Fqufn8&,

vnn8
q

~R!5^fnuFq&j
q~R!^Fqufn8&,

whereuFq&, jq~R!, andzq~R! are to be determined.
Given trial functionsjq~R! and zq~R!, Fq may be ob-

tained in the following way. If we scale the basis functions as
uĉq

n&5ucq
n&/^fnuFq&, the correlation functions relevant to

the calculation of̂ ĉq
nuAuĉq

n8& are

ûnn8
q

~R!5
unn8
q

~R!

^fnuFq&^Fqufn8&
5jq~R!

and similarlyv̂nn8
q (R)5zq(R). By using~9! we can calculate

the matrix elements of the norm~which involves overlap
integrals! and the Hamiltonian in the basisuĉq

n&. The eigen-
vectors of the Hamiltonian are then obtained as combinations
of the uĉq

n& ’s by ~1! orthonormalizing the basisuĉq
n& with
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respect to the norm, which yields an orthonormal basis, and
~2! diagonalizing the Hamiltonian in this new basis. Because
ucq& belongs to the space generated by theuĉq

n& ’s it may be
identified with the calculated eigenvector that has the
eigenenergy closest toEq5q2/2. Thus, we obtain the coeffi-
cients of the expansion:

ucq&5(
n

aq
nuĉ

qn
&.

But since ucq&5(nucq
n& @Eq. ~8!#, and because ofucq

n&
5^fnuFq&uĉq

n&, then aq
n5^fnuFq&. This process therefore

yields an approximation touFq&5(naq
nufn&.

The functionsjq~R! andzq~R! can be searched iteratively
as the solutions of integral equations that we will present and
use in a future publication. In the present paper, we only use
the estimates that permit us to initiate the iterations. To zero
order with respect to V expression ~5! yields
Š^R1ucq&^CquR2&d~R2R11R2!‹ proportional toe

iq•r Initial
jq~R! andjq~R! are then obtained as

jq~R!5g~R!eiq•R, jq~R!5g~R!. ~10!

IV. APPLICATION

In this section, we use the method and the approximations
described above to calculate an electron-ion correlation func-
tion ge2 i~r ! in liquid sodium, and we compare our results to
~1! a calculation in crystalline bcc sodium, and~2! a calcu-
lation in which the site-to-site correlations are neglected.

The three calculations used the same screened pseudopo-
tential @8,9#. The screening effect was computed in a bcc
lattice adjusted to the liquid density~r050.928 g/cm3! by
relaxing the electronic system using a Car-Parrinello code.
The electron-ion correlation in crystalline bcc sodium was
calculated in this process. The energy cutoff was 100 Ry.
Exchange and correlation contributions were calculated us-
ing the local-density approximation~LDA !. The transferabil-
ity problems related to the nonlinearity of the LDA exchange
correlation functional, which can be significant for the alkali-
metal atoms, were taken care of following Louieet al. @10#.
The isotropy of the resulting potential was good.

This screened pseudopotential is then placed in a uniform
electronic density r0, and the displaced charge
dr~r !5r~r !2r0 is calculated by solving the partial spherical
waves. The electron-ion correlation function is then obtained
within the charge superposition approximation by convolu-
tion with the ion-ion correlation functiong~r ! ~a hard-sphere
model @11# and a hard-sphere packing fraction equal to
h50.433@12# were used!. This method of calculation, which
consists of a superposition of independently displaced
charges~SIDC!, neglects the electronic correlations from site
to site and is quite close to linear response theory~see@13#,
for instance!.

By contrast, the displaced charge calculated with our
method accounts for the existence of neighbors. Denoting
Ar~r 8!5(jd~r 82Rj2r !, the electron-ion correlation is equal
to

r0ge2 i~r !5(
q

f ~Eq!n~Eq!^cquArucq&,

where^cquArucq&5(nn8aq
n*aq

n8^ĉq
nuArucq

n8& is calculated by
using a small basis set of atomic orbitals~the 3s, 3p, 3d, and
4s states denotedufn&!. Figure 1 shows the two lowest cal-
culated eigenvalues. The self-consistency conditionE5q2/2
is well satisfied up toq'0.5 a.u., but the basis set we used is
too small to accurately describe higher energies. However,
since the Fermi level is reached forq'0.47 a.u., our calcu-
lation can be used to obtain the electron-ion correlation func-
tion. Using a free-electron density of states, this is decom-

posed as

r0ge2 i~r !5 (
n,n8 H fn~r !*fn8~r ! E

uqu,kF

dqaq
n*aq

n8

1r0E dRg~R!@fn~r !*fn8~r2R!

1fn~r1R!*fn8~r !# E
uqu,kF

dqaq
n*aq

n8eiq•R

1r0E dR)g(R)fn~r1R!*fn8~r1R!

3 E
uqu,kF

dqaq
n*aq

n81r0
2E dR1dR2n

3~0,R1 ,R2!

3fn~r1R2!*fn8~r1R22R1!

3 E
uqu,kF

dqaq
n*aq

n8eiq•R1J . ~11!

The four terms that appear in~11! may be interpreted as~a!
the charge that follows an ion,~b! the bonds between an ion
and its neighbors,~c! the charge that follows its neighbors,
and ~d! the bonds between its neighbors. The charge super-
position approximation is obtained by neglecting some cor-

FIG. 1. Calculated energies for liquid sodium: the lowest two
eigenenergies~in atomic units!.
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relations in the fourth sum. The charger̃ associated with
each ion is then the sum of the charge that follows an ion~a!
with half the charge of the bond~b!. Using the sameg~r ! that
was used in the SIDC, the resulting electron-ion correlation
function is

r0ge2 i~r !5 r̃~r !1r0E dr 8g~r 8!r̃~r2r 8!.

Results are shown in Fig. 2. As expected, the SIDC re-
sults are similar to those obtained in Ref.@13#. They show
the same positions for the peaks and problems of negative
density for small radii. The results obtained using the new
method differ significantly from these for radii smaller than
10 a.u.. The first peak is displaced~2.8 a.u. for the new
method instead of 3.2!. The problems of negative density for
small radii, found with SIDC, have disappeared. Further-
more, the agreement between the new density and the one
obtained from the electronic minimization in bcc sodium is
good.

V. CONCLUSIONS

Assuming that expectationŝcquAucq& are self-averaging
if ucq& is delocalized, we express the expectation value in
terms of some correlation functions. Hence, the expectation
value of an operator Tr(rA) may be calculated in terms of
~1! the density of states, and~2! the correlation functions. A
scheme to get approximate correlation functions is then pro-
posed, and a numerical application is performed in the case
of liquid sodium: the electron-ion correlation function is
computed and assessed. Future work includes development
of a self-consistent one-center potential@i.e, V~r ! in Eq. ~2!#

that is consistent with a given ionic disorder, and calculation
of the photoelectric effect.
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FIG. 2. Electron-ion correlation functions in liquid sodium. The
dotted line is the superposition of independently displaced charges
~SIDC!. The dashed line is the electronic minimization in a bcc
crystal. The heavy line corresponds to the proposed method.
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